Finally, a theorem, in the style of the Elements:
To trisect a segment. Let the endpoints of the segment be P, Q. Let R be any point not on PQ. Let M be the midpoint of PR, N be the midpoint of QR, O the midpoint of PQ. Then let S be the midpoint of MO, and T be the midpoint of NO. Produce the line RS to PQ in X; similarly, produce the line RT to PQ in Y. Then PX, XY, YZ are equal to one-third of PQ.
Proof: We begin by calculating S and T:
S = { definition with M, O :=ray
.P.R.½,ray
.P.Q.½ }ray
.(ray
.P.R.½).(ray
.P.Q.½).½ = { (18), twice }ray
.(P → ½·‹R−P›).(P → ½·‹Q−P›).½ = { (18) } P → ½·‹R−P› → ½·‹(P → ½·‹Q−P›)−(P → ½·‹R−P›)› = { (3); linearity } P → ½·(‹R−P› + ‹(P → ½·‹Q−P›)−(P → ½·‹R−P›)›) = { (9) } P → ½·(‹R−P› + ‹P−P› + ½·‹Q−P› − ½·‹R−P›) = { (6); linearity } P → ¼·(‹R−P› + ‹Q−P›)From considerations of symmetry, T = S[P, Q := Q, P]. We have:
(21) S = P → ¼·(‹R−P› + ‹Q−P›) (22) T = Q → ¼·(‹R−Q› + ‹P−Q›)Finally, we calculate X and Y:
X = { definition }meet
.P.Q.R.S = { (20); (18) } P → (‹S−R›⊥⋅‹R−P›)/(‹S−R›⊥⋅‹Q−P›)·‹Q−P› = { (21) } P → (‹(P → ¼·(‹R−P› + ‹Q−P›))−R›⊥⋅‹R−P›)/(‹(P → ¼·(‹R−P› + ‹Q−P›))−R›⊥⋅‹Q−P›)·‹Q−P› = { (2), twice } P → ((‹P−R› + ¼·(‹R−P› + ‹Q−P›))⊥⋅‹R−P›)/((‹P−R› + ¼·(‹R−P› + ‹Q−P›))⊥⋅‹Q−P›)·‹Q−P› = { (5), twice; linearity throughout } P → ((¼·‹Q−P› − ¾·‹R−P›)⊥⋅‹R−P›)/((¼·‹Q−P› − ¾·‹R−P›)⊥⋅‹Q−P›)·‹Q−P› = { (10) and (11), twice } P → ((¼·‹Q−P›⊥ − ¾·‹R−P›⊥)⋅‹R−P›)/((¼·‹Q−P›⊥ − ¾·‹R−P›⊥)⋅‹Q−P›)·‹Q−P› = { linearity of inner product, twice } P → (¼·‹Q−P›⊥⋅‹R−P› − ¾·‹R−P›⊥⋅‹R−P›)/(¼·‹Q−P›⊥·‹Q−P› − ¾·‹R−P›⊥⋅‹Q−P›)·‹Q−P› = { (14), twice } P → (¼·‹Q−P›⊥⋅‹R−P›)/(−¾·‹R−P›⊥⋅‹Q−P›)·‹Q−P› = { (12) } P → (¼·‹Q−P›⊥⋅‹R−P›)/(¾·‹Q−P›⊥⋅‹R−P›)·‹Q−P› = { algebra } P → ⅓·‹Q−P›To finalize, from considerations of symmetry, Y =
meet
.Q.P.R.T = (meet
.P.Q.R.S)[P, Q := Q, P]. Hence:(23) X = P → ⅓·‹Q−P› (24) Y = Q → ⅓·‹P−Q›
No comments:
Post a Comment